login
A334571
E.g.f.: exp(-(x + x^2/2 + x^3/3 + x^4/4 + x^5/5)).
3
1, -1, 0, 0, 0, 0, 120, -120, -720, -5040, -40320, -362880, 3024000, 21859200, 151113600, 753667200, -3978374400, -249882796800, -1752623308800, -7319841177600, 79100731699200, 2905096654540800, 48387220210944000, 226481995918080000, -2094278695939584000, -85503113536135680000
OFFSET
0,7
LINKS
FORMULA
a(0) = 1 and a(n) = - (n-1)! * Sum_{k=1..min(5,n)} a(n-k)/(n-k)!.
MATHEMATICA
m = 25; Range[0, m]! * CoefficientList[Series[Exp[-(x + x^2/2 + x^3/3 + x^4/4 + x^5/5)], {x, 0, m}], x] (* Amiram Eldar, May 03 2021 *)
PROG
(PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(-x-x^2/2-x^3/3-x^4/4-x^5/5)))
CROSSREFS
Column 5 of A334568.
Sequence in context: A174149 A268920 A332560 * A056466 A056456 A239535
KEYWORD
sign
AUTHOR
Seiichi Manyama, May 06 2020
STATUS
approved