login
A334531
Numbers that are both binary Niven numbers and binary Smith numbers.
2
55, 185, 205, 222, 246, 438, 623, 822, 973, 1503, 1939, 2359, 2471, 3126, 3205, 3462, 3573, 3661, 3771, 3846, 4711, 5877, 5949, 6093, 6198, 6655, 6918, 7083, 7550, 7931, 8151, 8170, 9567, 9863, 10265, 10683, 11241, 12280, 12318, 12486, 12678, 13695, 13790, 13820
OFFSET
1,1
LINKS
Wayne L. McDaniel, On the Intersection of the Sets of Base b Smith Numbers and Niven Numbers, Missouri Journal of Mathematical Sciences, Vol. 2, No. 3 (1990), pp. 132-136.
EXAMPLE
The binary representation of 55 is 110111. It is a binary Niven number since 1 + 1 + 0 + 1 + 1 + 1 = 5 is a divisor of 55. It is also a binary Smith number since its prime factorization, 5 * 11, is 101 * 1011 in binary representation, and 1 + 1 + 0 + 1 + 1 + 1 = (1 + 0 + 1) + (1 + 0 + 1 + 1). Thus 55 is a term.
MATHEMATICA
binWt[n_] := DigitCount[n, 2, 1]; binNivenSmithQ[n_] := Divisible[n, (bw = binWt[n])] && CompositeQ[n] && Plus @@ (Last@# * binWt[First@#] & /@ FactorInteger[n]) == bw; Select[Range[10^4], binNivenSmithQ]
CROSSREFS
Intersection of A049445 and A278909.
Cf. A334527.
Sequence in context: A039781 A135657 A178793 * A161763 A189005 A105442
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, May 05 2020
STATUS
approved