login
Numbers m for which p(m, 2)*p(m, 5) = p(m, 10), where p(m, b) is the period of repeating digits of 1/m in base b.
2

%I #31 May 15 2020 11:41:51

%S 1,2,4,31,62,124,601,1202,2404,2593,4808,5186,9616,10372,18631,20744,

%T 37262,41488,74524,82976,149048,165952,298096,331904,599479,1198958,

%U 2397916,204700049,409400098,466344409,668731841,818800196,932688818,1023500245,1337463682,1554449047

%N Numbers m for which p(m, 2)*p(m, 5) = p(m, 10), where p(m, b) is the period of repeating digits of 1/m in base b.

%C Numbers m such that A334487(m) = 1.

%H Ray Chandler, <a href="/A334488/b334488.txt">Table of n, a(n) for n = 1..56</a> (first 45 terms from Giovanni Resta)

%H Robert G. Wilson v and Ray Chandler, <a href="/A334488/a334488_2.txt">Known terms (not exhaustive)</a>

%o (PARI)

%o a2(n) = znorder(Mod(2,n/2^valuation(n,2))); \\ A007733

%o a5(n) = znorder(Mod(5,n/5^valuation(n,5))); \\ A007736

%o a10(n) = znorder(Mod(10,n/2^valuation(n,2)/5^valuation(n,5))); \\ A007732

%o isok(m) = a2(m)*a5(m) == a10(m);

%Y Cf. A007733, A007736, A007732, A334487.

%K nonn,base

%O 1,2

%A _Michel Marcus_, May 03 2020

%E a(28) from _Jinyuan Wang_, May 03 2020

%E a(29)-a(36) from _Giovanni Resta_, May 04 2020