login
Decimal expansion of Product_{k>=1} (1 - 1/A002145(k)^3).
10

%I #23 Jun 27 2020 11:53:40

%S 9,5,9,1,4,2,7,1,1,0,4,3,2,0,7,3,4,4,9,9,9,7,0,5,9,1,3,7,5,0,2,0,9,8,

%T 1,5,3,6,5,4,2,3,6,5,9,7,7,4,4,5,7,1,0,6,3,4,8,6,2,6,6,4,3,2,8,0,6,8,

%U 5,4,9,8,8,3,8,6,4,2,2,3,8,9,3,4,1,2,3,9,3,7,7,5,3,7,4,3,9,7,1,3,5,8,1,1,1,3

%N Decimal expansion of Product_{k>=1} (1 - 1/A002145(k)^3).

%D B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

%H Ph. Flajolet and I. Vardi, <a href="http://algo.inria.fr/flajolet/Publications/landau.ps">Zeta function expansions of some classical constants</a>, Feb 18 1996, p. 7-8.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1008.2547">Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli</a>, arXiv:1008.2547 [math.NT], 2010-2015, p. 26 (case 4 3 3 = 1/A334427).

%F A334426 / A334427 = 28*zeta(3)/Pi^3.

%F A334425 * A334427 = 8/(7*zeta(3)).

%e 0.959142711043207344999705913750209815365423...

%Y Cf. A002145, A243379, A334448, A334452.

%K nonn,cons

%O 0,1

%A _Vaclav Kotesovec_, Apr 30 2020

%E More digits from _Vaclav Kotesovec_, Jun 27 2020