login
Decimal expansion of Product_{k>=1} (1 + 1/A002145(k)^3).
10

%I #17 Jun 27 2020 11:53:57

%S 1,0,4,1,1,5,8,0,7,2,8,2,3,4,4,4,5,8,0,3,3,8,3,6,0,5,6,9,9,2,5,6,1,5,

%T 6,6,9,3,7,6,0,7,1,3,5,1,1,3,4,9,3,5,4,1,7,3,9,4,9,8,8,6,6,6,1,7,8,5,

%U 4,1,3,5,5,8,5,6,1,3,5,0,3,5,3,5,6,0,4,7,4,5,5,4,6,7,1,0,8,7,4,3,1,5,3,6,3

%N Decimal expansion of Product_{k>=1} (1 + 1/A002145(k)^3).

%D B. C. Berndt, Ramanujan's notebook part IV, Springer-Verlag, 1994, p. 64-65.

%H Ph. Flajolet and I. Vardi, <a href="http://algo.inria.fr/flajolet/Publications/landau.ps">Zeta function expansions of some classical constants</a>, Feb 18 1996, p. 7-8.

%F A334426 / A334427 = 28*zeta(3)/Pi^3.

%F A334424 * A334426 = 840*zeta(3)/Pi^6.

%e 1.041158072823444580338360569925615669376071...

%Y Cf. A002145, A243381, A334447, A334451.

%K nonn,cons

%O 1,3

%A _Vaclav Kotesovec_, Apr 30 2020

%E More digits from _Vaclav Kotesovec_, Jun 27 2020