login
Decimal expansion of Sum_{k>=0} (-1)^k/(2^k*(k!)^2).
8

%I #20 Sep 20 2021 10:51:16

%S 5,5,9,1,3,4,1,4,4,4,1,8,9,7,9,9,1,7,4,8,8,2,6,8,4,6,7,9,1,6,8,9,6,4,

%T 0,9,8,0,6,3,6,2,5,0,4,0,3,0,9,8,3,8,6,5,7,1,5,3,1,1,7,3,4,2,1,9,7,1,

%U 7,1,2,9,2,2,8,0,2,3,1,2,6,5,1,5,7,1,0,4,4,1,9,0,2,3,4,7,2,9,4,9,4,0,8,7,4,4,9,4,4,8

%N Decimal expansion of Sum_{k>=0} (-1)^k/(2^k*(k!)^2).

%H <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a>

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals BesselJ(0,sqrt(2)).

%F Equals BesselI(0,sqrt(2)*i), where BesselI is the modified Bessel function of order 0. - _Jianing Song_, Sep 18 2021

%e 1/(2^0*0!^2) - 1/(2^1*1!^2) + 1/(2^2*2!^2) - 1/(2^3*3!^2) + ... = 0.5591341444189799174882684679...

%t RealDigits[BesselJ[0, Sqrt[2]], 10, 110] [[1]]

%o (PARI) besselj(0, sqrt(2)) \\ _Michel Marcus_, Apr 26 2020

%Y Cf. A055546, A092605.

%Y Bessel function values: A334380 (J(0,1)), this sequence (J(0,sqrt(2)), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2)), A070910 (I(0,2)).

%K nonn,cons

%O 0,1

%A _Ilya Gutkovskiy_, Apr 25 2020