%I
%S 1,0,1,1,0,1,2,3,2,0,1,12,72,256,579,812,644,216,0,1,32,496,
%T 4936,35276,191840,820328,2808636,7759343,17276144,30675244,
%U 42494732,44214736,32375904,14772272,3125472,0,1,80,3160,82080,1575420,23805776,294640000
%N Irregular triangle read by rows: row n gives scaled coefficients of the chromatic polynomial corresponding to colorings of the nhypercube graph up to automorphism, highest powers first, 0 <= k <= 2^n.
%C The polynomials are scaled by a factor of n!*2^n to ensure integer coefficients. When evaluated at x = k, they give the number of nonisomorphic kcolorings of the nhypercube graph under the automorphism group of the graph. The size of the automorphism group is n!*2^n. Colors may not be interchanged.
%H Andrew Howroyd, <a href="/A334358/b334358.txt">Table of n, a(n) for n = 0..68</a> (rows 0..5)
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HypercubeGraph.html">Hypercube Graph</a>
%e Triangle begins:
%e 0  1, 0;
%e 1  1, 1, 0;
%e 2  1, 2, 3, 2, 0;
%e 3  1, 12, 72, 256, 579, 812, 644, 216, 0;
%e ...
%e The corresponding polynomials are:
%e x;
%e (x^2  x)/(1!*2^1);
%e (x^4  2*x^3 + 3*x^2  2*x)/(2!*2^2);
%e (x^8  12*x^7 + 72*x^6  256*x^5 + 579*x^4  812*x^3 + 644*x^2  216*x)/(3!*2^3);
%e ...
%e The polynomial (x^4  2*x^3 + 3*x^2  2*x)/(2!*2^2) gives A002817 when evaluated at integer values of x.
%Y Cf. A002817, A334159, A334248, A334356, A334357.
%K sign,tabf
%O 0,7
%A _Andrew Howroyd_, Apr 24 2020
