login
A334345
Numbers k such that k and k+1 are both binary Moran numbers (A334344).
3
115, 355, 1266, 1555, 1686, 1795, 4195, 4206, 4962, 5155, 5298, 6978, 9235, 10002, 11230, 13315, 18822, 21752, 22602, 23106, 26072, 29816, 40616, 42258, 60056, 60730, 64690, 68802, 83586, 87272, 91736, 94616, 100990, 107526, 108910, 109448, 113192, 121112, 125436
OFFSET
1,1
LINKS
EXAMPLE
115 is a term since 115/A000120(115) = 23 and 116/A000120(116) = 29 are both prime numbers.
MAPLE
q:= n-> (p-> is(p, integer) and isprime(p))(n/add(i, i=Bits[Split](n))):
select(k-> q(k) and q(k+1), [$1..126000])[]; # Alois P. Heinz, Apr 23 2020
MATHEMATICA
binMoranQ[n_] := PrimeQ[n / DigitCount[n, 2, 1]]; Select[Range[10^5], binMoranQ[#] && binMoranQ[# + 1] &]
CROSSREFS
Subsequence of A330931 and A334344.
Sequence in context: A063361 A340098 A208815 * A255143 A154070 A251215
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Apr 23 2020
STATUS
approved