login
Starts of runs of 4 consecutive base phi Niven numbers (A334308).
11

%I #9 Apr 23 2020 02:02:42

%S 285129,1958893,2501533,6488440,7069840,8803023,16514327,23826399,

%T 34031773,52256248,68198847,72969138,76779087,77622950,87430210,

%U 87474672,96485487,114137958,120197293,136275022,151444458,173740578,174878352,183872325,188385855,196268415

%N Starts of runs of 4 consecutive base phi Niven numbers (A334308).

%H Amiram Eldar, <a href="/A334311/b334311.txt">Table of n, a(n) for n = 1..155</a>

%e 285129 is a term since 285129, 285130, 285131 and 285132 are all base phi Niven numbers.

%t phiDigSum[1] = 1; phiDigSum[n_] := Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[ Log[GoldenRatio, n] ]][[1]]; phiNivenQ[n_] := Divisible[n, phiDigSum[n]]; q1 = phiNivenQ[1]; q2 = phiNivenQ[2]; q3 = phiNivenQ[3]; seq = {}; Do[q4 = phiNivenQ[n]; If[q1 && q2 && q3 && q4, AppendTo[seq, n - 3]]; q1 = q2; q2 = q3; q3 = q4, {n, 4, 10^5}]; seq

%Y Cf. A141769, A330933, A331824, A331825, A334308, A334309, A334310.

%K nonn,base

%O 1,1

%A _Amiram Eldar_, Apr 22 2020