%I #7 Apr 20 2020 09:55:17
%S 1,2,2,3,2,2,2,3,3,2,2,3,2,2,2,4,2,3,2,3,2,2,2,3,3,2,3,3,2,2,2,4,2,2,
%T 2,3,2,2,2,3,2,2,2,3,3,2,2,4,3,3,2,3,2,3,2,3,2,2,2,3,2,2,3,5,2,2,2,3,
%U 2,2,2,4,2,2,3,3,2,2,2,4,4,2,2,3,2,2,2
%N a(n) is the number of distinct terms in the n-th row of A334215.
%F a(n) <= A000005(n).
%F a(p^k) = A000267(k) for any k >= 0 and prime number p.
%o (PARI) a(n) = { my (f=factor(n)); #Set(apply (k -> prod (i=1, #f~, f[i,1]^(f[i,2]\k)), [1..1+if (n==1, 0, vecmax(f[,2]~))])) }
%Y Cf. A000005, A000267, A334215, A334217.
%K nonn
%O 1,2
%A _Rémy Sigrist_, Apr 19 2020