OFFSET
0,2
FORMULA
a(n) = n!*Sum_{k=0..n} A003269(k+1)/(n-k)!.
a(n) = n!*Sum_{k=0..n} Sum_{s=0..floor(k/3)} binomial(k-3*s, s)/(n-k)!.
E.g.f.: exp(x)/(1 - x - x^4).
MAPLE
W := proc(n, m) local v, s, h; v := 0;
for s from 0 to m do
if 0 = (m - s) mod 4 then
h := (m - s)/4;
v := v + binomial(n - s - 3*h, h)/s!;
end if; end do; n!*v; end proc;
seq(add(W(n1, m1), m1 = 0 .. n1), n1 = 0 .. 35);
MATHEMATICA
Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 50}], n]], t]], {n, 0, 40}]; (* Program due to Roger L. Bagula from A158777 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Petros Hadjicostas, Apr 16 2020
STATUS
approved