login
A334136
a(n) = (n-1)*sigma(n) where sigma is the sum of divisors A000203.
1
0, 3, 8, 21, 24, 60, 48, 105, 104, 162, 120, 308, 168, 312, 336, 465, 288, 663, 360, 798, 640, 756, 528, 1380, 744, 1050, 1040, 1512, 840, 2088, 960, 1953, 1536, 1782, 1632, 3185, 1368, 2220, 2128, 3510, 1680, 3936, 1848, 3612, 3432, 3240, 2208, 5828, 2736, 4557
OFFSET
1,2
LINKS
D. B. Lahiri, Some arithmetical identities for Ramanujan's and divisor functions, Bulletin of the Australian Mathematical Society, Volume 1, Issue 3 December 1969, pp. 307-314. See Theorem 1 p. 308.
FORMULA
G.f.: Sum_{k>=2} (k^2 - 1) * x^k / (1 - x^k)^2. - Ilya Gutkovskiy, Apr 15 2020
a(n) = A064987(n) - A000203(n). - Omar E. Pol, Apr 15 2020
MATHEMATICA
a[n_] := (n - 1) * DivisorSigma[1, n]; Array[a, 50] (* Amiram Eldar, Apr 15 2020 *)
PROG
(PARI) a(n) = (n-1)*sigma(n);
CROSSREFS
Cf. A000203 (sigma), A064987 (n*sigma(n)).
Partial sums give A332264.
Sequence in context: A075719 A245205 A101643 * A046815 A203848 A160404
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 15 2020
STATUS
approved