login
A334089
a(n) = sqrt(A334088(n)/2^(n-1)).
3
1, 2, 13, 272, 18281, 3944920, 2732887529, 6077512159232, 43384923739812577, 994156445200670735008, 73125714588602035608260981, 17265651822746410593596262486016, 13085551252412040683513520733767180041, 31834381760532514451976501491991780699626368
OFFSET
1,2
FORMULA
a(n) ~ exp(2*G*n^2/Pi) / 2^(3*n/2 - 5/8), where G is Catalan's constant A006752. - Vaclav Kotesovec, Apr 14 2020
MATHEMATICA
Table[Resultant[ChebyshevT[2*n, x/2], ChebyshevT[2*n, I*x/2], x]^(1/4) / 2^((n-1)/2), {n, 1, 15}] (* Vaclav Kotesovec, Apr 14 2020 *)
PROG
(PARI) {a(n) = sqrtint(sqrtint(polresultant(polchebyshev(2*n, 1, x/2), polchebyshev(2*n, 1, I*x/2)))/2^(n-1))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 14 2020
STATUS
approved