login
a(n) is the number of primes 2^(n-1) <= p < 2^n with minimal Hamming weight A091935(n-1) in this interval.
3

%I #10 Apr 09 2020 22:14:53

%S 1,1,2,1,2,3,3,1,4,2,3,2,2,2,4,1,3,4,5,3,2,1,5,1,32,2,5,2,2,8,6,37,5,

%T 3,4,2,3,2,2,57,3,5,52,1,5,3,7,63,1,2,5,1,5,2,6,87,6,99,2,3,2,1,2,102,

%U 2,3,5,3,6,2,2,2,5,2,7,1,3,2,3,1,6,2,4,3,3

%N a(n) is the number of primes 2^(n-1) <= p < 2^n with minimal Hamming weight A091935(n-1) in this interval.

%H Giovanni Resta, <a href="/A333878/b333878.txt">Table of n, a(n) for n = 2..1000</a>

%t a[2] = 1; a[n_] := Block[{c = 0, nb = 0}, While[c == 0, c = Count[ 2^(n-1) + 1 + Total /@ Subsets[ 2^Range[n - 2], {nb}], x_ /; PrimeQ[x]]; nb++]; c]; Array[a, 90, 2] (* _Giovanni Resta_, Apr 09 2020 *)

%Y Cf. A091935, A091936, A333876, A333879.

%K nonn

%O 2,3

%A _Hugo Pfoertner_, Apr 08 2020

%E Terms a(35) and beyond from _Giovanni Resta_, Apr 09 2020