%I #5 Apr 08 2020 07:53:03
%S 7,14,23,34,47,62,79,98,110,119,123,142,167,194,223,254,287,322,359,
%T 398,439,482,488,527,574,623,674,702,727,782,839,898,959,1022,1087,
%U 1154,1223,1294,1298,1367,1442,1519
%N Integers k such that A269254(k) = -1.
%C A008865(m) = m^2 - 2 is a term for any m > 2, see A269254 for a proof. Also note that 110, 123, 488, 702, 1298, ... are not of the form m^2 - 2.
%H Andrew N. W. Hone, et al., <a href="https://arxiv.org/abs/1802.01793">On a family of sequences related to Chebyshev polynomials</a>, arXiv:1802.01793 [math.NT], 2018.
%Y Cf. A008865, A269254.
%K nonn,hard,more
%O 1,1
%A _Jinyuan Wang_, Apr 08 2020