login
A333783
a(n) = sigma(n) - A332993(n).
8
0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 6, 0, 2, 3, 0, 0, 8, 0, 6, 3, 2, 0, 14, 0, 2, 0, 6, 0, 21, 0, 0, 3, 2, 5, 24, 0, 2, 3, 14, 0, 25, 0, 6, 12, 2, 0, 30, 0, 12, 3, 6, 0, 26, 5, 14, 3, 2, 0, 57, 0, 2, 12, 0, 5, 33, 0, 6, 3, 31, 0, 56, 0, 2, 18, 6, 7, 37, 0, 30, 0, 2, 0, 69, 5, 2, 3, 14, 0, 78, 7, 6, 3, 2, 5, 62, 0, 16, 12
OFFSET
1,6
COMMENTS
Sum of all other divisors of n, except those divisors that can be obtained by repeatedly taking the largest proper divisor (of previous such divisor, starting from n), up to and including the terminal 1.
FORMULA
a(n) = A000203(n) - A332993(n).
a(n) = A001065(n) - A006022(n).
a(n) = A333784(n) - A333791(n).
PROG
(PARI)
A332993(n) = if(1==n, n, n + A332993(n/vecmin(factor(n)[, 1])));
A333783(n) = (sigma(n) - A332993(n));
CROSSREFS
Cf. A000203, A000961 (positions of zeros), A001065, A006022, A032742, A332993, A333784, A333791.
Sequence in context: A353509 A326067 A318879 * A088886 A317636 A305566
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Apr 05 2020
STATUS
approved