login
a(n) = g(-n) - g(n), where g corresponds to the inverse of A333773.
2

%I #10 Apr 07 2020 12:20:01

%S 0,1,4,3,2,11,12,13,10,9,8,5,6,7,34,33,32,35,36,37,40,39,38,29,30,31,

%T 28,27,26,23,24,25,16,15,14,17,18,19,22,21,20,101,102,103,100,99,98,

%U 95,96,97,106,105,104,107,108,109,112,111,110,119,120,121,118

%N a(n) = g(-n) - g(n), where g corresponds to the inverse of A333773.

%C This sequence appears to be a self-inverse permutation of the nonnegative integers.

%H Rémy Sigrist, <a href="/A333780/b333780.txt">Table of n, a(n) for n = 0..6561</a>

%H Rémy Sigrist, <a href="/A333780/a333780.gp.txt">PARI program for A333780</a>

%e For n = 2:

%e - A333773(4) = 2, g(2) = 4,

%e - A333773(8) = -2, g(-2) = 8,

%e - so a(2) = 8 - 4 = 4.

%o (PARI) See Links section.

%Y Cf. A333773.

%K nonn,base

%O 0,3

%A _Rémy Sigrist_, Apr 05 2020