login
A333641
11-gonal (or hendecagonal) square numbers.
1
0, 1, 196, 29241, 1755625, 261468900, 38941102225, 2337990844401, 348201795147556, 51858411008887561, 3113535139359330841, 463705205422871375236, 69060571958250748760481, 4146338334574433921200225, 617522713934165528806340100, 91968930524758079223806760025
OFFSET
1,3
COMMENTS
The 11-gonal square numbers correspond to the nonnegative integer solutions of the Diophantine equation k*(9*k-7)/2 = m^2, equivalent to (18*k-7)^2 - 72*m^2 = 49. Substituting x = 18*k-7 and y = m gives the Pell equation x^2-72*y^2 = 49. The integer solutions (x,y) = (-7,0), (11,1), (119,14), (1451,171), (11243,1325), ... correspond to the following solutions (k,m) = (0,0), (1,1), (7,14), (81,171), (625,1325), ...
FORMULA
a(n) = k*(9*k-7)/2 for n > 1, where k = (A106525(4*n-6) + 7)/18. - Jinyuan Wang, Mar 31 2020
EXAMPLE
1755625 is a term because 625*(9*625-7)/2 = 1325^2 = 1755625; that means that 1755625 is the 625th 11-gonal number and the square of 1325.
MAPLE
for k from 0 to 8000000 do
d:= k*(9*k-7)/2;
if issqr(d) then print(k, sqrt(d), d); else fi; od:
MATHEMATICA
Last /@ Solve[(18*x - 7)^2 - 72*y^2 == 49 && x >= 0 && y >= 0 && y < 10^16, {x, y}, Integers] /. Rule -> (#2^2 &) (* Amiram Eldar, Mar 31 2020 *)
PROG
(PARI) concat(0, Vec(-x*(1 + 195*x + 29045*x^2 + 394670*x^3 + 29045*x^4 + 195*x^5 + x^6)/(-1 + x + 1331714*x^3 - 1331714*x^4 - x^6 + x^7) + O(x^20))) \\ Jinyuan Wang, Mar 31 2020
CROSSREFS
Intersection of A000290 (squares) and A051682 (11-gonals).
Cf. A106525.
Cf. A001110 (square triangulars), A036353 (square pentagonals), A046177 (square hexagonals), A036354 (square heptagonals), A036428 (square octagonals), A036411 (square 9-gonals), A188896 (only {0,1} are square 10-gonals), this sequence (square 11-gonals), A342709 (square 12-gonals).
Sequence in context: A114761 A076002 A145020 * A260863 A351683 A353064
KEYWORD
nonn,easy
AUTHOR
Bernard Schott, Mar 31 2020
EXTENSIONS
More terms from Amiram Eldar, Mar 31 2020
STATUS
approved