

A333535


Card{ k<=n, k such that all prime divisors of k are < sqrt(k) }.


6



0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 20, 21, 21, 21, 21, 21, 22, 23, 23, 23, 24, 24, 24, 24, 24, 24, 25
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,12


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..65536


MAPLE

a:=[];
for n from 1 to 100 do
c:=0;
for m from 1 to n do
if A006530(m)^2 < m then c:=c+1; fi; od:
a:=[op(a), c];
od:
a;
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 0, a(n1)+
`if`(max(map(i> i[1], ifactors(n)[2]))^2<n, 1, 0))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Apr 10 2020


CROSSREFS

The following are all different versions of sqrt(n)smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.
Sequence in context: A087866 A061392 A048273 * A175387 A024542 A209082
Adjacent sequences: A333532 A333533 A333534 * A333536 A333537 A333538


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Apr 10 2020


STATUS

approved



