login
A333319
a(n) is the number of subsets of {1..n} that contain exactly 3 odd and 1 even numbers.
1
0, 0, 0, 0, 0, 2, 3, 12, 16, 40, 50, 100, 120, 210, 245, 392, 448, 672, 756, 1080, 1200, 1650, 1815, 2420, 2640, 3432, 3718, 4732, 5096, 6370, 6825, 8400, 8960, 10880, 11560, 13872, 14688, 17442, 18411, 21660, 22800, 26600, 27930, 32340, 33880, 38962, 40733, 46552
OFFSET
0,6
COMMENTS
The general formula for the number of subsets of {1..n} that contain exactly k odd and j even numbers is binomial(ceiling(n/2), k) * binomial(floor(n/2), j).
FORMULA
a(n) = binomial(ceiling(n/2),3) * binomial(floor(n/2), 1).
From Colin Barker, Mar 15 2020: (Start)
G.f.: x^5*(2 + x + x^2) / ((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n>8.
(End)
EXAMPLE
a(7)=12 and the 12 subsets are {1,2,3,5}, {1,2,3,7}, {1,2,5,7}, {1,3,4,5}, {1,3,4,7}, {1,3,5,6}, {1,3,6,7}, {1,4,5,7}, {1,5,6,7}, {2,3,5,7}, {3,4,5,7}, {3,5,6,7}.
MATHEMATICA
Array[Binomial[Ceiling[#], 3] Binomial[Floor[#], 1] &[#/2] &, 48, 0] (* Michael De Vlieger, Mar 14 2020 *)
PROG
(PARI) concat([0, 0, 0, 0, 0], Vec(x^5*(2 + x + x^2) / ((1 - x)^5*(1 + x)^4) + O(x^40))) \\ Colin Barker, Mar 15 2020
CROSSREFS
Cf. A330299.
Sequence in context: A123761 A181121 A345362 * A047163 A046486 A073452
KEYWORD
nonn,easy
AUTHOR
Enrique Navarrete, Mar 14 2020
STATUS
approved