login
A333267
If n = Product (p_j^k_j) then a(n) = Product (a(pi(p_j)) * k_j), where pi = A000720.
1
1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1, 4, 2, 2, 3, 2, 2, 1, 2, 3, 2, 1, 3, 4, 1, 1, 1, 5, 1, 2, 2, 4, 2, 3, 1, 3, 1, 2, 2, 2, 2, 2, 1, 4, 4, 2, 2, 2, 4, 3, 1, 6, 3, 1, 2, 2, 2, 1, 4, 6, 1, 1, 3, 4, 2, 2, 2, 6, 2, 2, 2, 6, 2, 1, 1, 4, 4, 1, 2, 4, 2, 2, 1, 3, 3, 2, 2, 4, 1, 1, 3, 5, 2, 4, 2, 4
OFFSET
1,4
FORMULA
a(n) = A005361(n) * Product_{p|n, p prime} a(pi(p)).
a(n) = a(prime(n)).
a(p^k) = k * a(p), where p is prime.
a(A002110(n)) = Product_{k=1..n} a(k).
EXAMPLE
a(36) = a(2^2 * 3^2) = a(prime(1)^2 * prime(2)^2) = a(1) * 2 * a(2) * 2 = 4.
MAPLE
a:= proc(n) option remember;
mul(a(numtheory[pi](i[1]))*i[2], i=ifactors(n)[2])
end:
seq(a(n), n=1..120); # Alois P. Heinz, Mar 13 2020
MATHEMATICA
a[1] = 1; a[n_] := a[n] = Times @@ (a[PrimePi[#[[1]]]] #[[2]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Ilya Gutkovskiy, Mar 13 2020
STATUS
approved