The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333219 Heinz number of the n-th composition in standard order. 50
 1, 2, 3, 4, 5, 6, 6, 8, 7, 10, 9, 12, 10, 12, 12, 16, 11, 14, 15, 20, 15, 18, 18, 24, 14, 20, 18, 24, 20, 24, 24, 32, 13, 22, 21, 28, 25, 30, 30, 40, 21, 30, 27, 36, 30, 36, 36, 48, 22, 28, 30, 40, 30, 36, 36, 48, 28, 40, 36, 48, 40, 48, 48, 64, 17, 26, 33, 44 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Includes all positive integers. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. The Heinz number of a composition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). LINKS FORMULA A056239(a(n)) = A070939(n). EXAMPLE The sequence of terms together with their prime indices begins:    1: {}           15: {2,3}          25: {3,3}    2: {1}          20: {1,1,3}        30: {1,2,3}    3: {2}          15: {2,3}          30: {1,2,3}    4: {1,1}        18: {1,2,2}        40: {1,1,1,3}    5: {3}          18: {1,2,2}        21: {2,4}    6: {1,2}        24: {1,1,1,2}      30: {1,2,3}    6: {1,2}        14: {1,4}          27: {2,2,2}    8: {1,1,1}      20: {1,1,3}        36: {1,1,2,2}    7: {4}          18: {1,2,2}        30: {1,2,3}   10: {1,3}        24: {1,1,1,2}      36: {1,1,2,2}    9: {2,2}        20: {1,1,3}        36: {1,1,2,2}   12: {1,1,2}      24: {1,1,1,2}      48: {1,1,1,1,2}   10: {1,3}        24: {1,1,1,2}      22: {1,5}   12: {1,1,2}      32: {1,1,1,1,1}    28: {1,1,4}   12: {1,1,2}      13: {6}            30: {1,2,3}   16: {1,1,1,1}    22: {1,5}          40: {1,1,1,3}   11: {5}          21: {2,4}          30: {1,2,3}   14: {1,4}        28: {1,1,4}        36: {1,1,2,2} MATHEMATICA stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse; Table[Times@@Prime/@stc[n], {n, 0, 100}] CROSSREFS The length of the k-th composition in standard order is A000120(k). The sum of the k-th composition in standard order is A070939(k). The maximum of the k-th composition in standard order is A070939(k). A partial inverse is A333220. See also A233249. Cf. A048793, A056239, A066099, A112798, A114994, A124767, A213925, A225620, A228351, A233564, A272919, A333218. Sequence in context: A153249 A097621 A017851 * A265537 A061468 A084766 Adjacent sequences:  A333216 A333217 A333218 * A333220 A333221 A333222 KEYWORD nonn AUTHOR Gus Wiseman, Mar 16 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 23:06 EDT 2020. Contains 337174 sequences. (Running on oeis4.)