Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #11 Mar 09 2020 13:10:37
%S 1,1,1,1,2,1,1,7,5,1,1,50,42,12,1,1,751,680,222,27,1,1,23282,21831,
%T 7562,1059,58,1,1,1466767,1398635,498237,74279,4713,121,1,1,186279410,
%U 179093412,64674734,9931670,672830,20080,248,1
%N Triangle read by rows: T(n, k) = qStirling1(n, k, q) for q = 2, with 0 <= k <= n.
%F qStirling1(n, k, q) = qStirling1(n-1, k-1, q) + qBrackets(n-1, q)*qStirling1(n-1, k, q) with boundary values 0^k if n = 0 and n^0 if k = 0.
%F Note that also a second definition is used in the literature. The two versions differ by a factor of q^(n-k).
%e Triangle starts:
%e [0] 1
%e [1] 1, 1
%e [2] 1, 2, 1
%e [3] 1, 7, 5, 1
%e [4] 1, 50, 42, 12, 1
%e [5] 1, 751, 680, 222, 27, 1
%e [6] 1, 23282, 21831, 7562, 1059, 58, 1
%e [7] 1, 1466767, 1398635, 498237, 74279, 4713, 121, 1
%e [8] 1, 186279410, 179093412, 64674734, 9931670, 672830, 20080, 248, 1
%p qStirling1 := proc(n, k, q) option remember; with(QDifferenceEquations):
%p if n = 0 then return 0^k fi; if k = 0 then return n^0 fi;
%p qStirling1(n-1, k-1, p) + QBrackets(n-1, p)*qStirling1(n-1, k, p);
%p subs(p = q, expand(%)) end:
%p seq(seq(qStirling1(n, k, 2), k=0..n), n=0..9);
%Y T(n,n-1) = A000325(n).
%Y Cf. A333143.
%K nonn,tabl
%O 0,5
%A _Peter Luschny_, Mar 09 2020