login
A333140
a(n) is the least multiple of n of the form Sum_{k >= 0} e_k * b^k where b > 2 and Sum_{k >= 0} e_k * 2^k is the binary representation of n.
1
1, 4, 6, 16, 10, 12, 21, 64, 126, 30, 2211, 36, 3601, 84, 585, 256, 4097, 630, 194503, 4160, 273, 234762, 391276, 1512, 551125, 474578, 756, 336, 954274, 120, 341, 1024, 32769, 32776, 33554465, 252, 90225721, 79236650, 79236651, 33280, 147087951, 1092
OFFSET
1,2
COMMENTS
To compute a(n): interpret the binary representation of n in base A155078(n).
LINKS
EXAMPLE
For n = 42:
- the binary representation of 42 is "101010",
- A155078(42) = 4,
- so a(42) = 4^5 + 4^3 + 4^1 = 1092.
PROG
(PARI) a(n) = { my (d=binary(n)); for (b=3, oo, my (r=fromdigits(d, b)); if (r%n==0, return (r))) }
CROSSREFS
Cf. A155078.
Sequence in context: A009463 A066260 A248591 * A141042 A123667 A129597
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Mar 09 2020
STATUS
approved