login
A333135
Irregular table read by rows: Take a triangle with Pythagorean triple leg lengths with all diagonals drawn, as in A332978. Then T(n,k) = number of k-sided polygons in that figure for k >= 3 where the legs are divided into unit length parts.
4
139, 94, 34, 3, 1, 2383, 2421, 760, 167, 13, 2, 5307, 5958, 2113, 563, 80, 17, 2, 13083, 13560, 4479, 1002, 153, 16, 1, 18827, 20896, 8256, 2139, 377, 49, 6, 1, 42992, 45400, 15930, 3771, 579, 60, 5, 63526, 79275, 28922, 7315, 1404, 202, 14, 4
OFFSET
1,1
COMMENTS
See A332978 for the Pythagorean triple ordering and the links for images of the triangles.
LINKS
Lars Blomberg, Table of n, a(n) for n = 1..213 (the first 24 rows)
EXAMPLE
Table begins:
139, 94, 34, 3, 1;
2383, 2421, 760, 167, 13, 2;
5307, 5958, 2113, 563, 80, 17, 2;
13083, 13560, 4479, 1002, 153, 16, 1;
18827, 20896, 8256, 2139, 377, 49, 6, 1;
42992, 45400, 15930, 3771, 579, 60, 5;
63526, 79275, 28922, 7315, 1404, 202, 14, 4;
The row sums are A332978.
CROSSREFS
Cf. A332978 (regions), A333136 (vertices), A333137 (edges), A103605 (Pythagorean triple ordering), A007678, A092867, A331452.
Sequence in context: A261703 A266003 A340800 * A361342 A270310 A047652
KEYWORD
nonn,tabf
AUTHOR
EXTENSIONS
Corrected typo in a(12) and a(49) and beyond from Lars Blomberg, Jun 07 2020
STATUS
approved