login
A332975
Solutions k of the equation isigma(k) = isigma(k-1) + isigma(k-2) where isigma(k) is the sum of the infinitary divisors of k (A049417).
2
3, 24, 360, 5016, 28440, 42066, 50568, 60456, 187176, 998670, 1454706, 12055512, 14365608, 25726728, 27896424, 51670374, 91702962, 141084774, 236280786, 249854952, 386668344, 439362504, 792554574, 1115866152, 1931976696, 2467823442, 2496238590, 2655297558, 2715505440
OFFSET
1,1
LINKS
EXAMPLE
24 is a term since isigma(24) = 60 and isigma(22) + isigma(23) = 36 + 24 = 60.
MATHEMATICA
fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; Select[Range[3, 10^5], isigma[#] == isigma[# - 1] + isigma[# - 2] &]
CROSSREFS
The infinitary version of A065900.
Sequence in context: A153389 A366000 A375800 * A010791 A145169 A193210
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 04 2020
STATUS
approved