OFFSET
0,2
LINKS
Philip K. Hotchkiss, Generalized Rascal Triangles, arXiv:1907.11159 [math.HO], 2019, Figure 10 p. 4.
FORMULA
By rows: a(2n,0)=a(2n,2n)=1, a(2n+1,0)=a(2n+1,2n+1)=2 for all n >= 0, while the interior numbers are defined recursively by a(n,k) = (a(n-1,k-1)*a(n-1,k)+1)/a(n-2,k-1) for n >= 2, 0 < k <= n.
By antidiagonals: T(0,2n)=T(2n,0)=1, T(0,2n+1)=T(2n+1,0)=2 for all n >= 0, while the interior numbers are defined recursively by T(r,k) = (T(r-1,k)*(Tr,k-1)+1)/T(r-1,k-1) for r,k > 0.
EXAMPLE
For row 3: a(3,0)=2, a(3,1)= 3, a(3,2)=3, a(3,3)=2.
For antidiagonal 3: T(3,0)=2, T(3,1)=7, T(3,2)=5, T(3,3)=13, ...
Triangle begins:
1;
2, 2;
1, 5, 1;
2, 3, 3, 2;
1, 7, 2, 7, 1;
2, 4, 5, 5, 4, 2;
...
PROG
(PARI) T(n, k) = if ((n<0) || (n<k), 0, if ((k==0) || (k==n), if (n%2, 2, 1), (T(n-1, k-1)*T(n-1, k)+1)/T(n-2, k-1)));
matrix(7, 7, n, k, T(n-1, k-1)) \\ to see the triangle \\ Michel Marcus, Mar 16 2020
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philip K Hotchkiss, Mar 04 2020
STATUS
approved