login
A332937
a(n) is the greatest common divisor of the first two terms of row n of the Wythoff array (A035513).
4
1, 1, 2, 3, 4, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 5, 1, 1, 6, 1, 1, 7, 1, 1, 8, 1, 1, 9, 2, 1, 10, 1, 1, 11, 2, 1, 1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 5, 4, 3, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 1, 1, 4, 7, 1, 1, 1, 3, 2, 1, 1, 1
OFFSET
1,3
COMMENTS
a(n) is also the gcd of every pair of consecutive terms of row n of the Wythoff array. Conjectures: the maximal number of consecutive 1's is 5, and the limiting proportion of 1's exists. See A332938.
EXAMPLE
See A332938.
MATHEMATICA
W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; (* A035513 *)
t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}] (* A332937 *)
Flatten[Position[t, 1]] (* A332938 *)
PROG
(PARI) T(n, k) = (n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k); \\ A035513
a(n) = gcd(T(n, 0), T(n, 1)); \\ Michel Marcus, Mar 03 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 03 2020
STATUS
approved