login
A332880
If n = Product (p_j^k_j) then a(n) = numerator of Product (1 + 1/p_j).
7
1, 3, 4, 3, 6, 2, 8, 3, 4, 9, 12, 2, 14, 12, 8, 3, 18, 2, 20, 9, 32, 18, 24, 2, 6, 21, 4, 12, 30, 12, 32, 3, 16, 27, 48, 2, 38, 30, 56, 9, 42, 16, 44, 18, 8, 36, 48, 2, 8, 9, 24, 21, 54, 2, 72, 12, 80, 45, 60, 12, 62, 48, 32, 3, 84, 24, 68, 27, 32, 72
OFFSET
1,2
COMMENTS
Numerator of sum of reciprocals of squarefree divisors of n.
(6/Pi^2) * A332881(n)/a(n) is the asymptotic density of numbers that are coprime to their digital sum in base n+1 (see A094387 and A339076 for bases 2 and 10). - Amiram Eldar, Nov 24 2022
LINKS
FORMULA
Numerators of coefficients in expansion of Sum_{k>=1} mu(k)^2*x^k/(k*(1 - x^k)).
a(n) = numerator of Sum_{d|n} mu(d)^2/d.
a(n) = numerator of psi(n)/n.
a(p) = p + 1, where p is prime.
a(n) = A001615(n) / A306695(n) = A001615(n) / gcd(n, A001615(n)). - Antti Karttunen, Nov 15 2021
From Amiram Eldar, Nov 24 2022: (Start)
Asymptotic means:
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A332881(k) = 15/Pi^2 = 1.519817... (A082020).
Limit_{m->oo} (1/m) * Sum_{k=1..m} A332881(k)/a(k) = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442... (A065463). (End)
EXAMPLE
1, 3/2, 4/3, 3/2, 6/5, 2, 8/7, 3/2, 4/3, 9/5, 12/11, 2, 14/13, 12/7, 8/5, 3/2, 18/17, ...
MAPLE
a:= n-> numer(mul(1+1/i[1], i=ifactors(n)[2])):
seq(a(n), n=1..80); # Alois P. Heinz, Feb 28 2020
MATHEMATICA
Table[If[n == 1, 1, Times @@ (1 + 1/#[[1]] & /@ FactorInteger[n])], {n, 1, 70}] // Numerator
Table[Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}], {n, 1, 70}] // Numerator
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A332880(n) = numerator(A001615(n)/n);
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Feb 28 2020
STATUS
approved