login
Number of digits in the number formed by concatenating the digits of n, n+1, ..., A332584(n), or -1 if A332584(n) = -1.
3

%I #14 Apr 24 2021 12:27:03

%S 2,154,6443,26258,2,86,25,4,4165,38,505,42,108,319,2906,90,445,636086,

%T 711,54,245,22,12,126,32,154843,20,30,883,2057,4970,577,76,70,139,749,

%U 40,89959,380407,42715,805,8548,2031

%N Number of digits in the number formed by concatenating the digits of n, n+1, ..., A332584(n), or -1 if A332584(n) = -1.

%C a(44) is currently unknown.

%H J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], April 2020.

%F Let f(i) = A058183(i). Assuming A332584(n)>0, a(n) = f(A332584(n))-f(n-1) for n>1. - _N. J. A. Sloane_, Feb 20 2020

%e For n=2, A332584(2) = 88, and the concatenation 2 || 3 || ... || 82 is

%e 23456789101112131415161718192021222324252627282930313233343536373839\

%e 40414243444546474849505152535455565758596061626364656667686970717273747\

%e 576777879808182, which has 154 digits. So a(2) = 154.

%Y Cf. A332580, A332584.

%K nonn,base,more

%O 1,1

%A _Scott R. Shannon_ and _N. J. A. Sloane_, Feb 17 2020