OFFSET
1,4
COMMENTS
The irredundance number of a graph is the minimum size of a maximal irredundant set.
For any graph the following relation holds:
irredundance number (this sequence)
<= domination number (A263284)
<= independent domination number (A332402)
<= independence number (A263341)
<= upper domination number (A332403)
<= upper irredundance number (A332405).
LINKS
Eric Weisstein's World of Mathematics, Maximal Irredundant Set
FORMULA
T(n,k) = T(n-1,k-1) for 2*(k-1) >= n.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 5, 1, 1;
11, 16, 5, 1, 1;
34, 94, 21, 5, 1, 1;
156, 710, 150, 21, 5, 1, 1;
1044, 9419, 1691, 164, 21, 5, 1, 1;
12346, 221979, 38207, 1944, 164, 21, 5, 1, 1;
274668, 9907071, 1773452, 47802, 1983, 164, 21, 5, 1, 1;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Feb 11 2020
STATUS
approved