login
A332257
E.g.f.: (1 - sinh(x)) / (1 - 2*sinh(x)).
2
1, 1, 4, 25, 208, 2161, 26944, 391945, 6515968, 121866721, 2532496384, 57890223865, 1443611004928, 38999338931281, 1134616226381824, 35367467110007785, 1175946733416153088, 41543231955279099841, 1553948045857778827264, 61355543097139813855705
OFFSET
0,3
LINKS
Paul Kinlaw, Michael Morris, and Samanthak Thiagarajan, Sums related to the Fibonacci sequence, Husson University (2021).
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A006154(k) * a(n-k).
a(n) ~ n! / (2*sqrt(5) * log((1 + sqrt(5))/2)^(n+1)). - Vaclav Kotesovec, Feb 08 2020
MATHEMATICA
nmax = 19; CoefficientList[Series[(1 - Sinh[x])/(1 - 2 Sinh[x]), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) seq(n)={Vec(serlaplace((1 - sinh(x + O(x*x^n))) / (1 - 2*sinh(x + O(x*x^n)))))} \\ Andrew Howroyd, Feb 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 08 2020
STATUS
approved