login
A332256
E.g.f.: 1 / (2 - exp(sinh(x))).
0
1, 1, 3, 14, 87, 672, 6231, 67412, 833475, 11593140, 179170947, 3045978388, 56490392943, 1134970258372, 24557211519951, 569294311105300, 14077429483372251, 369861235318338404, 10289111057247180411, 302132879478864660340, 9338874072977661538119
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A003724(k) * a(n-k).
a(n) ~ n! / (2 * sqrt(1 + log(2)^2) * (log(log(2) + sqrt(1 + log(2)^2)))^(n+1)). - Vaclav Kotesovec, Feb 08 2020
MATHEMATICA
nmax = 20; CoefficientList[Series[1/(2 - Exp[Sinh[x]]), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) seq(n)={Vec(serlaplace(1/(2 - exp(sinh(x + O(x*x^n))))))} \\ Andrew Howroyd, Feb 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 08 2020
STATUS
approved