OFFSET
0,5
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A032032(k) * a(n-k).
a(n) ~ n! * 2^(n-1) / ((c-1) * (2*c-3)^(n+1)), where c = -LambertW(-1, -exp(-3/2)) = 2.3576766739458990584... - Vaclav Kotesovec, Feb 08 2020
MATHEMATICA
nmax = 22; CoefficientList[Series[1/(2 - 1/(2 + x - Exp[x])), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) seq(n)={Vec(serlaplace(1/(2 - 1 / (2 + x - exp(x + O(x*x^n))))))} \\ Andrew Howroyd, Feb 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 08 2020
STATUS
approved