login
A332255
E.g.f.: 1 / (2 - 1 / (2 + x - exp(x))).
0
1, 0, 1, 1, 13, 41, 461, 2745, 32397, 288937, 3794605, 44758649, 665371565, 9660560937, 162652002189, 2782536864697, 52737562595917, 1033546861769513, 21867683869860845, 481630083492884601, 11277805333488014445, 275314710164399079337, 7077059249870048306125
OFFSET
0,5
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * A032032(k) * a(n-k).
a(n) ~ n! * 2^(n-1) / ((c-1) * (2*c-3)^(n+1)), where c = -LambertW(-1, -exp(-3/2)) = 2.3576766739458990584... - Vaclav Kotesovec, Feb 08 2020
MATHEMATICA
nmax = 22; CoefficientList[Series[1/(2 - 1/(2 + x - Exp[x])), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) seq(n)={Vec(serlaplace(1/(2 - 1 / (2 + x - exp(x + O(x*x^n))))))} \\ Andrew Howroyd, Feb 08 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 08 2020
STATUS
approved