login
A332208
Numbers k such that the squarefree kernel of sigma(k) is equal to the squarefree kernel of 2*k.
4
6, 28, 120, 135, 270, 496, 672, 891, 1080, 1638, 1782, 3780, 8128, 18600, 20580, 24948, 26208, 30240, 32640, 32760, 35640, 41850, 44226, 55860, 66960, 164640, 167400, 185220, 199584, 200655, 273000, 293760, 307125, 401310, 441936, 446880, 502740, 523776, 544635, 614250, 707616, 802620, 819000, 884520
OFFSET
1,1
COMMENTS
Numbers k such that sigma(k) has the same set of distinct prime factors as 2*k.
Numbers k such that A007947(sigma(k)) is equal to A007947(2*k), or equally, that A087207(sigma(k)) is equal to A087207(2*k).
Of the first 256 terms 44 are odd, and none occurs in A228058. Compare also to A331752.
FORMULA
{n: A080398(n) == A007947(2n)}.
MATHEMATICA
Select[Range[10^6], SameQ @@ Map[Times @@ FactorInteger[#][[All, 1]] &, {DivisorSigma[1, #], 2 #}] &] (* Michael De Vlieger, Feb 08 2020 *)
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
isA332208(n) = (A007947(sigma(n)) == A007947(2*n));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 07 2020
STATUS
approved