login
A332057
Partial sums (and absolute value of first differences) of A332056: if odd (resp. even) add (resp. subtract) the partial sum to get the next term.
3
1, 3, 2, 3, 7, 4, 5, 11, 6, 7, 15, 8, 9, 19, 10, 11, 23, 12, 13, 27, 14, 15, 31, 16, 17, 35, 18, 19, 39, 20, 21, 43, 22, 23, 47, 24, 25, 51, 26, 27, 55, 28, 29, 59, 30, 31, 63, 32, 33, 67, 34, 35, 71, 36, 37, 75, 38, 39, 79, 40
OFFSET
1,2
COMMENTS
The terms show a 3-quasiperiodic pattern (2m-1, 4m-1, 2m), m = 1, 2, 3, ...
Or: group positive integers by pairs, then insert the sum of the pair between the two terms.
LINKS
FORMULA
a(3k-2) = 2k - 1, a(3k-1) = 4k - 1, a(3k) = 2k, for all k >= 1.
From Colin Barker, Feb 25 2020: (Start)
G.f.: x*(1 + x)*(1 + 2*x + x^3) / ((1 - x)^2*(1 + x + x^2)^2).
a(n) = 2*a(n-3) - a(n-6) for n>6.
(End)
PROG
(PARI) apply( {A332057(n)=n<<max(n%3, 1)\/3}, [1..99])
(PARI) Vec(x*(1 + x)*(1 + 2*x + x^3) / ((1 - x)^2*(1 + x + x^2)^2) + O(x^60)) \\ Colin Barker, Feb 26 2020
CROSSREFS
Cf. A332056.
Sequence in context: A136389 A338032 A350770 * A275330 A141863 A071010
KEYWORD
nonn,easy
AUTHOR
Eric Angelini and M. F. Hasler, Feb 24 2020
STATUS
approved