login
A331974
Infinitary highly touchable numbers: numbers m > 1 such that a record number of numbers k have m as the sum of the proper infinitary divisors of k.
4
2, 6, 8, 17, 21, 37, 49, 55, 67, 79, 85, 91, 121, 151, 175, 181, 211, 295, 301, 361, 391, 421, 481, 511, 571, 631, 781, 841, 991, 1051, 1231, 1261, 1471, 1561, 1651, 1681, 1891, 2101, 2311, 2731, 3151, 3361, 3571, 3991, 4201, 4291, 4411, 4621, 5251, 5461, 6091
OFFSET
1,1
COMMENTS
The corresponding record values are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...
The infinitary version of A238895.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..76 (terms below 30000)
EXAMPLE
a(1) = 2 since it is the first number which is not the sum of proper infinitary divisors of any number.
a(2) = 6 since it is the least number which is the sum of proper infinitary divisors of one number: 6 = A126168(6).
a(3) = 8 since it is the least number which is the sum of proper infinitary divisors of 2 numbers: 8 = A126168(10) = A126168(12).
MATHEMATICA
fun[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ (fun @@@ FactorInteger[n]); is[n_] := isigma[n] - n; m = 300; v = Table[0, {m}]; Do[i = is[k]; If[2 <= i <= m, v[[i]]++], {k, 1, m^2}]; s = {}; vm = -1; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[s, k]], {k, 2, m}]; s
KEYWORD
nonn
AUTHOR
Amiram Eldar, Feb 03 2020
STATUS
approved