
Integer solutions of special periodic continued fractions 

 

Statement: 

The continued fraction 

 √� = ��; ��, �, … , �, 2�� ���ℎ � > 0, � > 0 ��� ������ � either has no 

integer solution for r or an infinite number of such solutions which are terms of 

a quadratic sequence.  

Proof in 3 steps: 

 

1) Introduction  

Let r be a rational number and � = √� and � = ⌊�⌋.  

Generally, x has a continued fraction with period p.  

Example p=3: � = ��; ��, �, 2���: 
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Shortcut for this continued fraction: 
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2) Recurrence for � > 1 and integer solutions for � = 3 

"#1, �, �$ =
1
�

, "#�, �, �$ =
1

� + "#� − 1, �, �$
, � ≤ � 

In particular, for � = 3: 

"#2, �, �$ =
�

�� + 1
      "#3, �, �$ =
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This yields 

� − � =
�#� + �$ + 1

#�. + 1$#� + �$ + �
 

which is a simple quadratic equation: 

 #�. + 1$ ⋅ #�. − �.$ − 2�� − 1 = 0 

 



with the solution 

(2.1) � = �. = �. + 0#�, �, �$ ���ℎ 0#�, �, �$ = .1&'%
&2'%

, � = 3 

We only accept solutions such that 0#�, �, �$ is an integer. 

If c is odd, there is no integer solution because �. + 1 is even and 2�� + 1 is 

odd. No integer has a square root with a continued fraction ��; �1,1,2��. 

 

 � = 2 with 0#3,2, �$ = 31'%
4

  yields an integer solution for � = 56 + 1 with 

0#3,2, �$ = 46 + 1 and � = #56 + 1$. + 46 + 1. 

This means that the integer solutions for � = 3 ��� � = 2 are concentrated on 

a quadratic sequence. 

 � = 4 with 0#3,4, �$ = 81'%
%9

  yields � = #176 + 2$. + 86 + 1.  

This way we can generate quadratic sequences for p=3 and even values of c. 

 

3) Integer solutions for any p>2 

Lemma: 

"#�, �, �$ has the general form  "#�, �, �$ =
<=⋅>'?=

@=⋅>'<=
 with �A = BA + � ⋅ �A. 

Proof by induction 

Base case: "#2, �, �$ = >
&>'%

 with � = 2: �. = 1, B. = 0, �A = � 

Induction step: 

"#� + 1, �, �$ =
1

� +
�A ⋅ � + BA
�A ⋅ � + �A

=
�A ⋅ � + �A

D#�. + 1$�A + � ⋅ BAE ⋅ � + �A
 

This is true for 

�A'% = �A;    BA'% = �A;  �A'% = #�. + 1$�A + � ⋅ BA = BA'% + � ⋅ �A'% 

 

General equation:  � − � =  "#�, �, � + �$ =
<=⋅#F'1$'?=

@=⋅#F'1$'<=
 

or �A ⋅ #�. − �.$ − 2� ⋅ �A − BA = 0 

with the solution 

� = �. = �. + 0#�, �, �$;   0#�, �, �$ =
2� ⋅ �A + BA

�A
 

If q = gcdD2�A, �AE is no divisor of BA, then numerator and denominator are 

different modulo q for any m and there is no integer solution for r, see (2.1), 

example 0#3,1, �$. Otherwise, according to the rules of elementary number 

theory, there is an infinite number of integer solutions for r like those 

described in the preceding chapter.  

Herewith, the statement is proved. 

 


