Integer solutions of special periodic continued fractions

Statement:

The continued fraction
$\sqrt{r}=[m ;[c, c, \ldots, c, 2 m]]$ with $m>0, c>0$ and period p either has no integer solution for r or an infinite number of such solutions which are terms of a quadratic sequence.

Proof in 3 steps:

1) Introduction

Let r be a rational number and $x=\sqrt{r}$ and $m=\lfloor x\rfloor$.
Generally, x has a continued fraction with period p .
Example $\mathrm{p}=3$: $x=[m ;[c, c, 2 m]]$:
$x-m=\frac{1}{c+\frac{1}{c+\frac{1}{2 m+\frac{1}{c+\frac{1}{c+\frac{1}{2 m+\cdots}}}}}}$
Shortcut for this continued fraction:
$x-m=\frac{1}{c+\frac{1}{c+\frac{1}{2 m+x-m}}}$
or $x-m=f(p, c, x+m)$ with $f(p, c, t)=\frac{1}{c+\frac{1}{c+\frac{1}{t}}}$
2) Recurrence for $p>1$ and integer solutions for $p=3$

$$
f(1, c, t)=\frac{1}{t}, f(n, c, t)=\frac{1}{c+f(n-1, c, t)}, n \leq p
$$

In particular, for $p=3$:

$$
f(2, c, t)=\frac{t}{c t+1} \quad f(3, c, t)=\frac{c t+1}{\left(c^{2}+1\right) t+c}
$$

This yields

$$
x-m=\frac{c(x+m)+1}{\left(c^{2}+1\right)(x+m)+c}
$$

which is a simple quadratic equation:

$$
\left(c^{2}+1\right) \cdot\left(x^{2}-m^{2}\right)-2 m c-1=0
$$

with the solution
(2.1) $r=x^{2}=m^{2}+R(p, c, m)$ with $R(p, c, m)=\frac{2 m c+1}{c^{2}+1}, p=3$

We only accept solutions such that $R(p, c, m)$ is an integer.
If c is odd, there is no integer solution because $c^{2}+1$ is even and $2 m c+1$ is odd. No integer has a square root with a continued fraction $[m ;[1,1,2 m]$].
$c=2$ with $R(3,2, m)=\frac{4 m+1}{5}$ yields an integer solution for $m=5 k+1$ with $R(3,2, m)=4 k+1$ and $r=(5 k+1)^{2}+4 k+1$.
This means that the integer solutions for $p=3$ and $c=2$ are concentrated on a quadratic sequence.
$c=4$ with $R(3,4, m)=\frac{8 m+1}{17}$ yields $r=(17 k+2)^{2}+8 k+1$.
This way we can generate quadratic sequences for $p=3$ and even values of c.

3) Integer solutions for any $p>2$

Lemma:
$f(p, c, t)$ has the general form $f(p, c, t)=\frac{a_{p} \cdot t+b_{p}}{e_{p} \cdot t+a_{p}}$ with $e_{p}=b_{p}+c \cdot a_{p}$.
Proof by induction
Base case: $f(2, c, t)=\frac{t}{c t+1}$ with $p=2: a_{2}=1, b_{2}=0, e_{p}=c$
Induction step:

$$
f(p+1, c, t)=\frac{1}{c+\frac{a_{p} \cdot t+b_{p}}{e_{p} \cdot t+a_{p}}}=\frac{e_{p} \cdot t+a_{p}}{\left(\left(c^{2}+1\right) a_{p}+c \cdot b_{p}\right) \cdot t+e_{p}}
$$

This is true for

$$
a_{p+1}=e_{p} ; \quad b_{p+1}=a_{p} ; \quad e_{p+1}=\left(c^{2}+1\right) a_{p}+c \cdot b_{p}=b_{p+1}+c \cdot a_{p+1}
$$

General equation: $x-m=f(p, c, x+m)=\frac{a_{p} \cdot(x+m)+b_{p}}{e_{p} \cdot(x+m)+a_{p}}$

$$
\text { or } e_{p} \cdot\left(x^{2}-m^{2}\right)-2 m \cdot a_{p}-b_{p}=0
$$

with the solution

$$
r=x^{2}=m^{2}+R(p, c, m) ; \quad R(p, c, m)=\frac{2 m \cdot a_{p}+b_{p}}{e_{p}}
$$

If $\mathrm{q}=\operatorname{gcd}\left(2 a_{p}, e_{p}\right)$ is no divisor of b_{p}, then numerator and denominator are different modulo q for any m and there is no integer solution for r, see (2.1), example $R(3,1, m)$. Otherwise, according to the rules of elementary number theory, there is an infinite number of integer solutions for r like those described in the preceding chapter.
Herewith, the statement is proved.

