login
A331957
Number of rooted chains in set partitions of {1, 2, ..., n}.
9
1, 1, 2, 8, 64, 872, 18024, 525520, 20541392, 1036555120, 65591856032, 5085891210864, 474213645013904, 52346708185187392, 6751386193135966464, 1005991884967386086400, 171500271138273300946720, 33167303833191421470542496, 7222314392966179538774364128, 1759036134944451206655721276256
OFFSET
0,3
COMMENTS
Also the number of chains of Stirling numbers of the second kind such that the first term of the chains is either {{1}, {2}, ..., {n}} or {{1,2,...,n}}.
Number of rooted fuzzy equivalence matrices of order n.
LINKS
S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of Non-Equivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
V. Murali, Equivalent finite fuzzy sets and Stirling numbers, Inf. Sci., 174 (2005), 251-263.
R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1) (1991), 23-31.
FORMULA
a(n) = Sum_{k=0..n} A331956(n,k).
EXAMPLE
The a(3) = 8 in the lattice of set partitions of {1,2,3}:
{{1},{2},{3}},
{{1},{2},{3}} < {{1,2},{3}},
{{1},{2},{3}} < {{1,3},{2}},
{{1},{2},{3}} < {{1},{2,3}},
{{1},{2},{3}} < {{1,2,3}},
{{1},{2},{3}} < {{1,2},{3}} < {{1,2,3}},
{{1},{2},{3}} < {{1,3},{2}} < {{1,2,3}},
{{1},{2},{3}} < {{1},{2,3}} < {{1,2,3}}.
Or,
{{1,2,3}},
{{1,2,3}} > {{1,2},{3}},
{{1,2,3}} > {{1,3},{2}},
{{1,2,3}} > {{1},{2,3}},
{{1,2,3}} > {{1},{2},{3}},
{{1,2,3}} > {{1},{2,3}} > {{1},{2},{3}},
{{1,2,3}} > {{2},{1,3}} > {{1},{2},{3}},
{{1,2,3}} > {{3},{1,2}} > {{1},{2},{3}}.
MAPLE
b:= proc(n, k, t) option remember; `if`(k<0 or k>n, 0, `if`(k=1 or
{n, k}={0}, 1, add(b(v, k-1, 1)*Stirling2(n, v), v=k..n-t)))
end:
a:= n-> add(b(n, k, 0), k=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 09 2020
MATHEMATICA
b[n_, k_, t_] := b[n, k, t] = If[k < 0 || k > n, 0, If[k == 1 || Union@{n, k} =={0}, 1, Sum[b[v, k - 1, 1]*StirlingS2[n, v], {v, k, n - t}]]];
a[n_] := Sum[b[n, k, 0], {k, 0, n}];
a /@ Range[0, 30]
PROG
(PARI) b(n, k, t) = {if (k < 0, return(0)); if ((n==0) && (k==0), return (1)); if ((k==1) && (n>0), return(1)); sum(v = k, n - t, if (k==1, 1, b(v, k-1, 1))*stirling(n, v, 2)); }
a(n) = sum(k=0, n, b(n, k, 0); ); \\ Michel Marcus, Feb 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
S. R. Kannan, Rajesh Kumar Mohapatra, Feb 02 2020
EXTENSIONS
More terms from Michel Marcus, Feb 08 2020
STATUS
approved