login
A331892
Positive numbers k such that the negabinary expansion (A039724) of -k is palindromic.
3
1, 5, 7, 17, 21, 31, 35, 57, 65, 85, 93, 119, 127, 147, 155, 201, 217, 257, 273, 325, 341, 381, 397, 455, 471, 511, 527, 579, 595, 635, 651, 745, 777, 857, 889, 993, 1025, 1105, 1137, 1253, 1285, 1365, 1397, 1501, 1533, 1613, 1645, 1767, 1799, 1879, 1911, 2015
OFFSET
1,2
COMMENTS
Numbers of the form 2^(2*m-1) - 1 (A083420) and 2^(2*m) + 1 (A052539) are terms.
LINKS
EXAMPLE
5 is a term since the negabinary representation of -5 is 1111 which is palindromic.
MATHEMATICA
negabin[n_] := negabin[n] = If[n==0, 0, negabin[Quotient[n-1, -2]]*10 + Mod[n, 2]]; Select[Range[2000], PalindromeQ @ negabin[-#] &]
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 30 2020
STATUS
approved