login
Number of nonnegative integer matrices with 2 columns and any number of distinct nonzero rows with column sums n and columns in nonincreasing lexicographic order.
3

%I #6 Jan 25 2020 20:55:43

%S 1,2,7,45,271,1244,7289,40841,201103,1044720,5172055,24532739,

%T 116470697,546142112,2505755203,11318525367,50046273319,219637249886,

%U 944072864849,4029243438335,16977344151163,70370874105726,289702060533067,1177283903981765,4740700176816041

%N Number of nonnegative integer matrices with 2 columns and any number of distinct nonzero rows with column sums n and columns in nonincreasing lexicographic order.

%C The condition that the columns be in nonincreasing order is equivalent to considering nonequivalent matrices up to permutation of columns.

%F a(n) = (A331646(n) + A032020(n)) / 2.

%e The a(2) = 2 matrices are:

%e [1 1] [1 0] [1 0] [2 1] [2 0] [1 0] [2 2]

%e [1 0] [1 1] [0 1] [0 1] [0 2] [1 2]

%e [0 1] [0 1] [1 1]

%Y Column k=2 of A331572.

%Y Cf. A032020, A331646, A331712.

%K nonn

%O 0,2

%A _Andrew Howroyd_, Jan 25 2020