The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331690 a(n) = Sum_{k=0..n} Stirling2(n,k) * k! * n^(n - k). 0
 1, 1, 4, 33, 456, 9445, 272448, 10386817, 503758720, 30202999821, 2189000524800, 188349613075393, 18954958449853440, 2203304642871358741, 292675996808408743936, 44022321302156791898625, 7438113993194856900034560, 1401876939543892434209075581 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(n) = [x^n] Sum_{k>=0} k! * x^k / Product_{j=1..k} (1 - n*j*x). a(n) = n! * [x^n] n / (1 + n - exp(n*x)) for n > 0. a(n) = n^(n + 1) * Sum_{k>=1} k^n / (n + 1)^(k + 1) for n > 0. MATHEMATICA Join[{1}, Table[Sum[StirlingS2[n, k] k! n^(n - k), {k, 0, n}], {n, 1, 17}]] Table[SeriesCoefficient[Sum[k! x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 17}] Join[{1}, Table[n^(n + 1) PolyLog[-n, 1/(n + 1)]/(n + 1), {n, 1, 17}]] PROG (PARI) a(n) = sum(k=0, n, stirling(n, k, 2)*k!*n^(n-k)); \\ Michel Marcus, Jan 24 2020 CROSSREFS Cf. A000670, A063170, A086914, A094420, A122704, A122778, A229234, A255927, A301419, A326323, A326324. Sequence in context: A193421 A179421 A296835 * A002190 A101981 A002018 Adjacent sequences:  A331687 A331688 A331689 * A331691 A331692 A331693 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 24 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 11:15 EDT 2021. Contains 342845 sequences. (Running on oeis4.)