login
A331655
Number of binary matrices with n distinct columns and any number of distinct nonzero rows with 4 ones in every column and rows in decreasing lexicographic order.
2
1, 0, 0, 1, 272, 64453, 23553340, 13241130441, 11008118941631, 13027230343637042, 21234181599255320655, 46357847997267210103060, 132373322228662190671151849, 484443861947038578745971380703, 2232754658868099948336222687731941, 12763566506391999019612414249332466653
OFFSET
0,5
COMMENTS
The condition that the rows be in decreasing order is equivalent to considering nonequivalent matrices with distinct rows up to permutation of rows.
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*A188446(k).
EXAMPLE
The a(3) = 1 matrix is:
[1 1 1]
[1 1 0]
[1 0 1]
[1 0 0]
[0 1 1]
[0 1 0]
[0 0 1]
CROSSREFS
Row n=4 of A331039.
Cf. A188446.
Sequence in context: A280044 A162009 A283789 * A225833 A198289 A198595
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Jan 24 2020
STATUS
approved