The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331607 E.g.f.: exp(1 / (1 - sin(x)) - 1). 4
 1, 1, 3, 12, 61, 372, 2639, 21280, 191833, 1908688, 20750331, 244478784, 3100597333, 42088689216, 608543191559, 9332562964480, 151252803045937, 2582250195499264, 46306562212010355, 870011934425816064, 17086276243125287917 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * A000111(k+1) * a(n-k). a(n) ~ 2^(n + 2/3) * exp(8/(3*Pi^2) - 5/6 + 2^(5/3) * n^(1/3) / Pi^(4/3) + 3 * 2^(1/3) * n^(2/3) / Pi^(2/3) - n) * n^(n - 1/6) / (sqrt(3) * Pi^(n + 1/3)). - Vaclav Kotesovec, Jan 26 2020 MATHEMATICA nmax = 20; CoefficientList[Series[Exp[1/(1 - Sin[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]! A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] A000111[k + 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}] CROSSREFS Cf. A000111, A000772, A002017, A331608, A331610, A331611. Sequence in context: A161799 A182970 A159925 * A235802 A317169 A121694 Adjacent sequences: A331604 A331605 A331606 * A331608 A331609 A331610 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Jan 22 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 19:19 EST 2022. Contains 358669 sequences. (Running on oeis4.)