The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A331577 Number of labeled rooted trees with n vertices and more than two branches of the root. 3
 0, 0, 0, 4, 65, 1026, 17857, 349224, 7657281, 186895270, 5037424601, 148805552556, 4784793219505, 166458635341194, 6231891513395745, 249886992888096976, 10686839817678846209, 485632267141865950926, 23370062118676064101801, 1187393725239246382405140 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..200 FORMULA For n > 1, a(n) = Sum_{k > 2} A206429(n, k). E.g.f.: f(x) - x*(1 + f(x) + f(x)^2/2), where f(x) is the e.g.f. of A000169. - Andrew Howroyd, Jan 23 2020 EXAMPLE Non-isomorphic representatives of the a(6) = 1026 trees (in the format root[branches]) are:   1[2,3,4[5[6]]]   1[2,3[4],5[6]]   1[2,3,4[5,6]]   1[2,3,4,5[6]]   1[2,3,4,5,6] MATHEMATICA lrt[set_]:=If[Length[set]==0, {}, Join@@Table[Apply[root, #]&/@Join@@Table[Tuples[lrt/@stn], {stn, sps[DeleteCases[set, root]]}], {root, set}]]; Table[Length[Select[lrt[Range[n]], Length[#]>2&]], {n, 6}] PROG (PARI) seq(n)={my(f=serreverse(x*exp(O(x^n) -x ))); Vec(serlaplace(f - x*(1 + f + f^2/2)), -n)} \\ Andrew Howroyd, Jan 23 2020 CROSSREFS The series-reduced version is A331578. The unlabeled version is A331233. Labeled rooted trees are counted by A000169. Cf. A000081, A033185, A060313, A060356, A206429, A331488, A331490. Sequence in context: A041119 A278547 A293562 * A307169 A335176 A307185 Adjacent sequences:  A331574 A331575 A331576 * A331578 A331579 A331580 KEYWORD nonn AUTHOR Gus Wiseman, Jan 21 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 23:03 EDT 2020. Contains 337174 sequences. (Running on oeis4.)