login
A331358
Number of oriented colorings of the edges of a tesseract with n available colors.
11
1, 22409620, 9651199594275, 96076801068337216, 121265960728368199375, 41451359960612034644436, 5752227470227262715982165, 412646679764073090531066880, 17883769897375781105874361581
OFFSET
1,2
COMMENTS
A tesseract is a regular 4-dimensional orthotope or hypercube with 16 vertices and 32 edges. Its Schläfli symbol is {4,3,3}. Two oriented colorings are the same if one is a rotation of the other; chiral pairs are counted as two. Also the number of oriented colorings of the triangular faces of a regular 4-dimensional orthoplex {3,3,4} with n available colors.
There are 192 elements in the rotation group of the tesseract. Each is associated with a partition of 4 based on the conjugacy group of the permutation of the axes. The first formula is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Even Cycle Indices
4 6 8x_8^4
31 8 4x_1^2x_3^10 + 4x_2^1x_6^5
22 3 4x_2^16 + 4x_4^8
211 6 4x_1^4x_2^14 + 4x_4^8
1111 1 x_1^32 + 7x_2^16
LINKS
Index entries for linear recurrences with constant coefficients, signature (33, -528, 5456, -40920, 237336, -1107568, 4272048, -13884156, 38567100, -92561040, 193536720, -354817320, 573166440, -818809200, 1037158320, -1166803110, 1166803110, -1037158320, 818809200, -573166440, 354817320, -193536720, 92561040, -38567100, 13884156, -4272048, 1107568, -237336, 40920, -5456, 528, -33, 1).
FORMULA
a(n) = (48*n^4 + 32*n^6 + 36*n^8 + 32*n^12 + 19*n^16 + 24*n^18 + n^32) / 192.
a(n) = C(n,1) + 22409618*C(n,2) + 9651132365418*C(n,3) + 96038196404417832*C(n,4) + 120785673234798359850*C(n,5) + 40725205155234194765220*C(n,6) + 5464611173328028329053040*C(n,7) + 367782713912186945387883840*C(n,8) + 14373563321596798877701789800*C(n,9) + 359883141899402124632485810800*C(n,10) + 6184991837595074128351177096800*C(n,11) + 76711443861342809436413801659200*C(n,12) + 712777405284132776184971034460800*C(n,13) + 5104524541259652946568783959507200*C(n,14) + 28797485239301310151711610238720000*C(n,15) + 130163892496470993203014850790912000*C(n,16) + 477548461917280632356433595575936000*C(n,17) + 1436223810514558840121822575516416000*C(n,18) + 3566452148795758403208660387955200000*C(n,19) + 7348050481070906467554726390758400000*C(n,20) + 12594856495384277051085880584652800000*C(n,21) + 17969280084916069147800454551859200000*C(n,22) + 21302862405912312079825436975308800000*C(n,23) + 20896529603947922315711136828211200000*C(n,24) + 16837871283345549751877122560000000000*C(n,25) + 11021533432128296153318764634112000000*C(n,26) + 5764800913106992933428143603712000000*C(n,27) + 2351280741029830331492705206272000000*C(n,28) + 720354927933711780177833164800000000*C(n,29) + 155891316152123120086047129600000000*C(n,30) + 21242333189959633945791037440000000*C(n,31) + 1370473109029653802954260480000000*C(n,32), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
a(n) = A331359(n) + A331360(n) = 2*A331359(n) - A331361(n) = 2*A331360(n) + A331361(n).
MATHEMATICA
Table[(48n^4 + 32n^6 + 36n^8 + 32n^12 + 19n^16 + 24n^18 + n^32)/192, {n, 1, 25}]
CROSSREFS
Cf. A331359 (unoriented), A331360 (chiral), A331361 (achiral).
Cf. A331350 (simplex), A331354 (orthoplex), A338952 (24-cell), A338964 (120-cell, 600-cell).
Sequence in context: A179710 A069317 A022211 * A046397 A226479 A126028
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jan 14 2020
STATUS
approved