OFFSET
1,2
COMMENTS
A regular 4-dimensional orthoplex (also hyperoctahedron or cross polytope) has 8 vertices and 24 edges. Its Schläfli symbol is {3,3,4}. An achiral coloring is identical to its reflection. Also the number of achiral colorings of the square faces of a tesseract {4,3,3} with n available colors.
There are 192 elements in the automorphism group of the 4-dimensional orthoplex that are not in its rotation group. Each is associated with a partition of 4 based on the conjugacy group of the permutation of the axes. The first formula is obtained by averaging their cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Partition Count Odd Cycle Indices
4 6 8x_2^2x_4^5
31 8 4x_3^4x_6^2 + 4x_6^4
22 3 8x_1^2x_2^1x_4^5
211 6 2x_1^2x_2^11 + 2x_1^6x_2^9 + 4x_2^2x_4^5
1111 1 4x_1^12x_2^6 + 4x_2^12
LINKS
G. Royle, Partitions and Permutations
Index entries for linear recurrences with constant coefficients, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).
FORMULA
a(n) = (8*n^4 + 8*n^6 + 18*n^7 + 6*n^8 + n^12 + 3*n^13 + 3*n^15 + n^18) / 48.
a(n) = C(n,1) + 8198*C(n,2) + 9055962*C(n,3) + 1467050480*C(n,4) + 74035775370*C(n,5) + 1679679306420*C(n,6) + 20864180531565*C(n,7) + 159341117375160*C(n,8) + 804216787965360*C(n,9) + 2808560520334800*C(n,10) + 6981656802951600*C(n,11) + 12540346820971200*C(n,12) + 16328843044113600*C(n,13) + 15272715797539200*C(n,14) + 10003790644848000*C(n,15) + 4357170994176000*C(n,16) + 1133753677056000*C(n,17) + 133382785536000*C(n,18), where the coefficient of C(n,k) is the number of colorings using exactly k colors.
MATHEMATICA
Table[(8n^4 + 8n^6 + 18n^7 + 6n^8 + n^12 + 3n^13 + 3n^15 + n^18)/48, {n, 1, 25}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jan 14 2020
STATUS
approved