login
A331307
Lexicographically earliest infinite sequence such that for all i, j: a(i) = a(j) => f(i) = f(j), where f(n) = A285722(n), except f(1) = -1.
3
1, 2, 2, 3, 4, 5, 6, 5, 3, 7, 8, 9, 4, 9, 10, 11, 12, 7, 6, 13, 14, 15, 16, 13, 4, 12, 17, 18, 19, 20, 21, 10, 8, 21, 22, 23, 24, 25, 26, 17, 4, 16, 27, 28, 29, 30, 31, 32, 27, 14, 11, 26, 33, 34, 35, 36, 37, 38, 39, 22, 4, 20, 39, 40, 41, 42, 43, 44, 45, 46, 33, 18, 15, 32, 47, 48, 49, 50, 51, 52, 53, 54, 47, 28, 4, 25, 46, 55, 56, 57, 58, 59, 60, 61, 62, 63, 40, 23, 19, 38
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of function: f(1) = -1, and for n>1, f(n) = A285722(n), when the latter is considered as an one-dimensional sequence.
For all i, j:
A331306(i) = A331306(j) => a(i) = a(j) => A072030(i) = A072030(j).
LINKS
PROG
(PARI)
up_to = 25425; \\ = binomial(225+1, 2)
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A000027pairton(a, b) = ((2+((a+b)^2 - a) - (3*b))/2);
A285722sq(n, k) = if(n==k, 0, if(n>k, A000027pairton(n-k, k), A000027pairton(n, k-n)));
A285722list(up_to) = { my(v = vector(up_to), i=0); for(a=1, oo, for(col=1, a, i++; if(i > up_to, return(v)); v[i] = A285722sq(col, (a-(col-1))))); (v); };
v285722 = A285722list(up_to);
A285722(n) = v285722[n];
A331307aux(n) = if(1==n, -n, A285722(n));
v331307 = rgs_transform(vector(up_to, n, A331307aux(n)));
A331307(n) = v331307[n];
CROSSREFS
Cf. also A331305, A331306.
Sequence in context: A241321 A093936 A329904 * A331306 A119353 A140859
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jan 19 2020
STATUS
approved