login
A331233
Number of unlabeled rooted trees with n vertices and more than two branches of the root.
4
0, 0, 0, 1, 2, 5, 12, 30, 75, 194, 501, 1317, 3485, 9302, 24976, 67500, 183290, 500094, 1369939, 3766831, 10391722, 28756022, 79794407, 221987348, 619019808, 1729924110, 4844242273, 13590663071, 38195831829, 107523305566, 303148601795, 855922155734, 2419923253795
OFFSET
1,5
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 500 terms from Andrew Howroyd)
FORMULA
For n > 1, a(n) = Sum_{k > 2} A033185(n - 1, k).
G.f.: f(x) - x*(1 + f(x) + (f(x)^2 + f(x^2))/2) where f(x) is the g.f. of A000081. - Andrew Howroyd, Jan 22 2020
EXAMPLE
The a(4) = 1 through a(7) = 12 rooted trees:
(ooo) (oooo) (ooooo) (oooooo)
(oo(o)) (oo(oo)) (oo(ooo))
(ooo(o)) (ooo(oo))
(o(o)(o)) (oooo(o))
(oo((o))) (o(o)(oo))
(oo((oo)))
(oo(o)(o))
(oo(o(o)))
(ooo((o)))
((o)(o)(o))
(o(o)((o)))
(oo(((o))))
MAPLE
g:= proc(n, i, t) option remember; `if`(n=0, `if`(t=0, 1, 0),
`if`(i<1, 0, add(binomial(g(i-1$2, 0)+j-1, j)*
g(n-i*j, i-1, max(0, t-j)), j=0..n/i)))
end:
a:= n-> g(n-1$2, 3):
seq(a(n), n=1..40); # Alois P. Heinz, Jan 22 2020
MATHEMATICA
urt[n_]:=Join@@Table[Union[Sort/@Tuples[urt/@ptn]], {ptn, IntegerPartitions[n-1]}];
Table[Length[Select[urt[n], Length[#]>2&]], {n, 10}]
(* Second program: *)
g[n_, i_, t_] := g[n, i, t] = If[n == 0, If[t == 0, 1, 0],
If[i < 1, 0, Sum[Binomial[g[i - 1, i - 1, 0] + j - 1, j]*
g[n - i*j, i - 1, Max[0, t - j]], {j, 0, n/i}]]];
a[n_] := g[n-1, n-1, 3];
Array[a, 40] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
PROG
(PARI) \\ TreeGf gives gf of A000081.
TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
seq(n)={my(g=TreeGf(n)); Vec(g - x*(1 + g + (g^2 + subst(g, x, x^2))/2), -n)} \\ Andrew Howroyd, Jan 22 2020
CROSSREFS
The Matula-Goebel numbers of these trees are given by A033942.
The series-reduced case is A331488.
The lone-child-avoiding case is (also) A331488.
The labeled version is A331577.
Unlabeled rooted trees are counted by A000081.
Sequence in context: A326793 A026580 A092247 * A108360 A051163 A051450
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 21 2020
STATUS
approved