login
A331193
Numbers whose binary and dual Zeckendorf representations are both palindromic.
4
0, 1, 3, 33, 231, 255, 891, 3687, 21477, 1216041, 5360069, 418964451, 443750859, 1445812789, 23577810421, 25474675645, 154292473329, 1904542477755, 1925488579591, 9617724354513, 16654480398927, 169215938357145, 2563713753111945, 3408057776446851, 4019397080882727
OFFSET
1,3
LINKS
EXAMPLE
3 is a term since both its binary and dual Zeckendorf representations are 11 which is palindromic.
33 is a term since its binary representation, 100001, and its dual Zeckendorf representation, 1010101, are both palindromic.
MATHEMATICA
mirror[dig_, s_] := Join[dig, s, Reverse[dig]];
select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &];
fib[dig_] := Plus @@ (dig * Fibonacci[Range[2, Length[dig] + 1]]);
pals = Join[{{}}, Rest[Select[IntegerDigits /@ FromDigits /@ Tuples[{0, 1}, 22], SequenceCount[#, {0, 0}] == 0 &]]];
dualZeckPals = Union @ Join[{0}, fib /@ Join[mirror[#, {}] & /@ (select[pals, 0]), mirror[#, {0}] & /@ (select[pals, 0]), mirror[#, {1}] & /@ pals]];
binPalQ[n_] := PalindromeQ@IntegerDigits[n, 2]; Select[dualZeckPals, binPalQ]
CROSSREFS
Intersection of A006995 and A331191.
Sequence in context: A289083 A195578 A370083 * A206950 A189644 A003129
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Jan 11 2020
EXTENSIONS
a(18)-a(22) from Chai Wah Wu, Jan 12 2020
a(23)-a(25) from Chai Wah Wu, Jan 13 2020
STATUS
approved